CM203 Digital Forensics I — Unit 10 - Washburn University — page 1 of 10

Unit 10 — The FAT32 File System

Unit 10.1 — Introduction

First the meaning of the name. FAT means that cluster allocation is done with a file allocation table.
32 refers to the fact that addresses are 32 bits long. Sometimes FAT32 is referred to as FAT32 LBA.
LBA means that logical block addresses are used instead of cylinder/head/sector addresses. Another
designation is VFAT. This was an extension of FAT to include long file names. The modern FAT32
file system stores long file names.

FAT file systems were used from the early days of MSDOS. As drives got larger (the early ones were
floppy disks) the size of the addresses grew from 12 bits, to 16 bits and finally 32 bits. The cylinder/
head/sector addresses put a limit on addressing so that when drives exceeded 2 GB in capacity that
scheme had to be abandoned. The modern FAT32 addressing extended this beyond the 2 GB limit, so it
is still in use today.

Microsoft stopped using FAT file systems for operating systems with the advent of Windows-NT in the
mid to late 1990s. Early versions of Windows assumed that there was only one user. The FAT file
system didn't have any way to store file ownership or file access permissions, so it was unsuitable for
an operating system that could handle multiple users.

The one arena where FAT32 still survives is in USB drives. They need to go from a camera, to a PC, to
a phone, etc. Support for FAT32 is ubiquitous, so it is still the standard on USB drives.

The allocation unit of FAT32 is the cluster. I've seen cluster sizes from 8 sectors to 64 sectors on
modern USB drives. This is not due to a limitation of the addressing, but is a compromise to keep the
size of the FAT small. The larger the FAT, the less room to store files. On the other hand, the larger the
cluster size, the more wasted space in storing small files. In the extreme case of 64 sector clusters a file
of a single byte would require 32 kB of space. All the space after that first byte is slack.

Unit 10.2 — Common Features of File Systems

Before we get into the details of the FAT32 file system let's look at some features that all file systems
have.

Copyright © 2024 Washburn University. All Rights Reserved.

CM203 Digital Forensics I — Unit 10 - Washburn University — page 2 of 10

All file systems have...

1. A group of blocks, usually 4 kB (4096 bytes) in size (but other sizes are possible). These
blocks are used to store new directories and files as needed.

2. A scheme to keep track of which block are used and which are unused.

3. An initial sector that describes where to find the root directory and how big the various tables
that keep track of things are.

4. A directory structure that starts with the root directory. The root directory can store files and
subdirectories within it.

5. A way to record which blocks belong to a particular file or directory.
Most file systems also have a way to indicate file ownership and access permissions. The FAT32 file
system does not have this, which is one of the reasons that it has been replaced as the OS file system in

modern Window's system.

You will see that file systems are very different in how they manage all of these things.

Unit 10.3 — The FAT32 Volume Boot Record (VBR)
The first sector of a FAT32 partition is the volume boot record (VBR). It contains information about
the partition such as the number of bytes per sector, the number of sectors per cluster, the number of

reserved sectors, how many FATSs there are, the size of each FAT, etc.

Reading the VBR the OS knows where the data clusters start and can find the root directory (always at
data cluster #2).

Here's a screenshot of the VisibleFS program showing the VBR of a FAT32 file system.

Copyright © 2024 Washburn University. All Rights Reserved.

CM203 Digital Forensics I — Unit 10 - Washburn University — page 3 of 10

v The Visible File System - /dev/sdd1 (as superuser) - + %
Open GoTo Print Tools Help
[Tree vView | Search | | 256 || 16 || 1 || 1= || 16— || 256 |
| < || = || Volume Boot Record || Root Directory ‘Sect: 0 (Phys Clust: 0)
¢ Volume Boot Record 61 2 3 456 7 889 ABCDEF
Jump instruction il ooOe EB S8 90 6D 6B 66 73 2E 66 61 74 00 02 08 20 00 . X.mkfs.fat... .
OEM name: mkfs.fat 0010 02 00 00 00 OO0 FB8 00 00 20 00 40 GO 0O GB QO GO [
Bytes per sector: 512 (Ox200) i oe20 00 00 83 00 BO 20 00 00 00 00 00 00 02 00 00 00
Sectors per cluster: 8 (Ox8) 7| oE30 01 00 06 G0 G0 00 G0 00 00 00 00 00 00 00 60 00
MNumber of reserved sectors: 32 (0x20) ;| G040 BO 01 20 Al 54 BE DE 20 20 20 20 20 20 20 20 20 ..).T..
Number of FATs: 2 (0x2) 0050 20 20 46 41 54 33 32 20 20 20 OE 1F BE 77 7C AC FAT32 ool
Unused 1| 0e60 22 CO 74 OB 56 B4 GE BB 07 00 CD 1@ SEEB FO 32 ".t.V.......~..2
Sectors in partition (if two bytes): 0 (0x0) 0070 E4 CD 16 CD 19 EB FE 5S4 68 69 73 20 69 73 20 6E This is n
Media type (F8=fixed, FO=removable) 0080 6F 74 20 61 20 62 6F 6F 74 61 62 6C 65 20 64 69 ot a bootable di
Unused 5| 0E90 73 6B 2E 20 20 50 BC 65 61 73 65 20 69 6E 73 65 sk, Please inse
Sectors in track: 32 (0x20) ODAD 72 74 20 61 20 62 6F 6F 74 61 62 6C 65 20 66 6C rt a bootable f1
Number of heads: 64 (0x40) ;| OEBO BF 7O 7O 79 20 61 BE 64 OD OA 70 72 65 73 73 20 oppy and..press
Sectors before start of partition: 2048 (0x800) ;| oeco 6l 6E 79 20 6B £5 7O 20 74 6F 20 74 72 79 20 61 any key to try a
Sectors in partition (if four bytes): 8585216 (0x830000) 0oDO 67 61 69 6E 20 2E 2E 2E 20 OD OA 00 00 GO 00 Q0
Sectors in FAT: 8368 (0x20B0) JGOEO 00 00 0O 00 00 00 G0 00 00 00 00 00 00 00 00 00
FAT write behavior: FATs are mirrored 0OFC 00 00 00 00 00 00 G0 00 00 00 00 00 00 GO0 00 00
Version numbers 7 G100 00 00 00 GO G0 00 G0 00 G0 00 00 60 GO G0 00 60
Root directory starts at data cluster 2 (0x2)* 0110 00 00 00 00 OO 00 G0 00 00 00 00 00 00 GO0 G0 00
FSINFO at sector: 1 (Ox1)* 0120 00 00 OO 00 00 00 00 00 00 00 00 00 00 GO0 G0 00
Backup VBR at sector: 6 (0x6) ;| 6130 00 0D 0D 00 00 OO 0D 00 00 00 00 00 00 00 00 00
Unused 0140 00 00 OO 00 00 00 00 00 00 00 00 00 00 G0 G0 00
BIOS INT12h drive number: 128 (0x80) 3| 6150 0O 00 00 G0 GO 00 G0 00 G0 60 00 0O 00 00 60 00
Unused ;| ol60 0O 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Extended boot signature (29=serial number and volume label follow) ||:| 6170 00 G0 60 66 GG 00 G0 GO0 G0 00 G0 60 G0 G0 00 60
Volume serial number: (OxDESES4A1) 56180 00 00 0O GO 00 00 G0 00 00 00 00 00 00 00 00 00
Volume label: 0190 00 00 00 00 00 00 G0 00 00 00 00 00 00 GO0 00 00
File system type: FAT32 ;| G1AD 00 00 00 G0 GO 00 G0 00 60 00 60 60 00 00 00 60
Bootloader code 0lBO OO 00 OO 00 00 00 00 00 00 00 00 00 00 GO0 00 Q0
Signature: OxAASS 0lCO 00 00 00 00 OO 00 00 00 00 00 00 00 00 G0 G0 00
¢ Derived quantities: i 0100 00 0O 0D 0O 00 00 G0 00 0O 00 00 00 00 00 00 00
FAT#1 starts at sector 32 (0x20, following reserved)* ;| olEG 0O 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

FAT#2 starts at sector 8400 (0x2000, following FAT#1)* {|BLFO 00 00 0O G0 0O G0 00 GO 00 GO 00 00 00 00 55 AA
Data clusters start at sector 16768 (0x4180 following FAT#2)* i

Indexing Complete

Notice the number of sectors per cluster, etc. It also tells you that the root directory is at data cluster 2.

In FAT32 LBA we must distinguish between “physical clusters” and “data clusters”. Physical
clusters start at the beginning of the partition and data clusters start immediately following the second
FAT, and the first one is numbered 2. Sometimes the data clusters are not aligned with physical clusters
(off by a few sectors).

All references to clusters in directories and in the FAT are references to data clusters. These must be
mapped to physical clusters in order to go to the correct sector.

By the way, there is usually an FSINFO record in the second sector of the partition. It gives the
number of free data clusters and the number of the next free data cluster. This is what the OS uses to
figure out where to start the next file. My guess is that this will prevent fragmentation, using all the
empty space on a new drive all the way to the end before going back and filling in the holes.

Unit 10.4 — The Root Directory

The location of the root directory is given in the VBR, but it is always at data cluster 2. Directories can
span many data clusters, in which case their data clusters are allocated using the FAT, similar to files

Copyright © 2024 Washburn University. All Rights Reserved.

CM203 Digital Forensics I — Unit 10 - Washburn University — page 4 of 10
(see next section). In the example below the root directory only occupies one cluster.

Here is a look at the root directory in the VisibleFS program.

The Visible File System - /dev/sddl (as superuser)
Open GoTo Print Tools Help
Tree View | Search | | —=r || — || = || — H = || s |
| < || > || Volume Boot Record || Root Directory ESect: 16768 (Phys Clust: 2096) Data Clust: 2
¢ Directory: v 01234567 889 ABCDEF
¢ Path | o0ee 20 20 20 20 20 20 20 20 20 20 20 08 00 00 62 63 bc [
\ | oolo 7F 48 7F 48 00 00 62 63 7F 48 00 00 00 00 00 00 .H.H..bc.H...... E
o \olume Label: | 0020 41 2E 00 54 00 72 00 61 00 73 00 OF G0 E4 68 80 A..T.r.a.s....h
& Directory; .Trash-1000 (@data cluster 3146)* | e30 20 Go 31 00 30 GO 30 0O 30 6O 00 00 G0 08 FF FF -.1.6.0.0
o Deleted Entry (@data cluster 3) | 0040 54 52 41 53 48 20 7E 31 20 20 20 16 60 64 87 20 TRASH-.1 d
¢ Directory; cm203 (@data cluster 3)* | 0850 81 43 81 43 00 00 87 2D 81 43 4A 0C 0D 00 00 00 .H.H. HI o
DOS 8.3 name: CM203 | 0060 ES 4E 54 49 54 4C 7E 31 20 20 20 10 00 64 6C 58 .NTITL.1 dil
o Attributes: Ox10 - directory | oo7a 7F 48 7F 48 00 GO 6C 5B 7F 48 03 00 G0 00 60 00 .H.H..1[.H......
Created: 4/1/2016 5:44:14 am ||eose 41 63 60 6D O 32 6O 30 GO 33 GO OF 60 13 60 B0 Ac.;m.2.0.3......
Accessed: 4/1/2016 Joee FEFFFFFFFFFEFFFEFFFF G0 0B FEFFEFEFE ...l
First Cluster (high word): 0 (0x0) | 000 43 4D 32 38 33 28 20 20 20 20 20 10 080 64 B7 20 CM203 ..d.-
Modified: 4/1/2016 5:44:14 am |oeE@ 81 48 81 48 @0 GO &7 2D 81 48 03 00 GO 00 GG 60 .H.H...- H......
First Cluster {low word): 2 (0x3) : 0OCO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 80 vvvve
Size: 0 /| 0oDO 00 0O 00 00 0O 0O 00 00 00 00 00 00 00 00 00 00 ov.vvvvn..
Long Name: cm203 | 0OE0 ©E GO G 00 00 00 60 GO 00 00 00 00 60 60 60 60 ...l
| ooF@ 00 0O 00 G0 00 00 00 00 00 00 00 00 60 00 00 60
| 0160 0C 0O 00 B0 B0 0O B0 00 68 60 00 00 60 00 60 B0
| 0110 00 0O 00 G0 00 0O 00 00 00 00 00 00 00 00 00 00 v.ovvvn.. —|
Jolen on oo A0 AN A0 AR GA O AR AN O AN G/ N AR 6N il
Directory @2: \

Of the 4 highlighted lines the last two are the actual directory entry. The first 2 are the long file name
(I'l get into that later).

Starting at 0xAO we see the first 8 bytes of the DOS 8.3 filename: “CM203 ” (note the 3 spaces). At
0xA8 the 3 bytes of the file extension are spaces (it is a directory so they should be). At OxAB there is
a 0x10 flag which tells us this is a directory. From OxAE to 0xB1 are bytes 0x48812D87 (little-endian)
which is the created timestamp(see below). The next two bytes are the accessed date (0x4881),
followed by the high word of the starting data cluster (0000), then the modified timestamp from 0xB6
to 0xB9 (0x48812D87) and then the low word of the starting data cluster (0x0003). The next four
bytes are the size allocated to this entity (0x00000000) which is zero since it's a directory.

DOS timestamps can be analyzed as follows. The first two bytes are the date. The number 0x4881
written in binary is 0100100010000001. Next separate the bits into groupings of 7, 4 and 5 like this:
0100100_0100_00001. The first group is the number of years since 1980. In this case it is 36. The
year is thus 1980+36 = 2016. The second group gives the month, which is 4 or April. The last group
gives the day, which is 1. So the date is April 1, 2016.

The next two bytes are the time. The number 0x2D87 in binary is 0010110110000111. Separating the
bits in groups of 5, 6 and 5 we write 00101_101100_00111. The first group is the hour, which in this
case is 5. The second group is the minute, which in this case is 44. The last group gives the number of
double seconds, which is 7. Multiply by 2 to get 14 seconds. The time is thus 5:42:14. AM and PM
are included in the hour, which can range from 0 to 23. There is no way to account for daylight savings
time in this scheme. Also notice that all second values are even numbers.

Unfortunately the cluster number is separated by the modified timestamp and the program reading this
directory must piece together two different numbers. Thus the starting cluster of this directory is

Copyright © 2024 Washburn University. All Rights Reserved.

CM203 Digital Forensics I — Unit 10 - Washburn University — page 5 of 10

0x00000003. (I speculate that originally the access date was a 4 byte timestamp like the others, but as
addresses got larger they took two bytes from the access timestamp and used it to make the cluster

addresses bigger.)

The long filename is a bit kludgey (it was definitely added as an afterthought). To get the long

filename you work backwards from the actual directory entry looking for flag bits of 0xOF. The first
byte gives you a sequence number (in this case one record above is marked with a 41. The 4 tells you

that this is the end of the long filename records. The 1 tells you it is the first record of the long
filename. We'll see directory entries with longer file names a little later.

After the first byte we see the long file name in UTF-16 little-endian. You need to skip over 3 bytes
when you hit the flags (offset 0xB to 0xD), and two more bytes where the low word of the start cluster
would be stored (offset 0x1A to 0x1B), then resume at the second byte of the next record. Unused

bytes after the file name are filled with OxFF.

The last entry is a deleted entry. Deleted entries are marked with a OxE5 in the first byte. The rest of
the data, including most of the filename and all the timestamps are still intact (and sometimes of

forensic value).

Below is a screenshot of the directory \cm203\files\images.

Open GoTo Print Tools Help

> The Visible File System - /dev/sdd1 (as superuser)

Tree View I’Search |

| < || = || Volume Boot Record || Root Directory

¢ Directory: images
¢ Path
\em203files\images
o Directory: . (@data cluster 5)*
o= Directory: .. (@data cluster 4)*
o File: Lotk JPG (@data cluster 6)*
o= File: LotkK-maps.png (@data cluster 40)*
¢ File: simon__syon_8652076528.jpg (@data cluster 50)*
¢ File: shaireproductions_S5901561832.jpg (@dsata cluster 449)*
DOS 8.3 name: SHAIRE~1JPG
o= Attributes: Ox20 -file , archive
Created: 3/31/2016 11:29:18 am
Accessed: 3/31/2016
First Cluster (high word): 0 (0x0)
Modified: 5/23/2014 2:22:20 am
First Cluster (low word): 449 (0x1C1)
Size: 545639
Long Name: shaireproductions_5901561832.jpg
o= File: sayantan_7854647044.jpg (@data cluster 583)*
¢ File: pedrosimoes7_9871620665.jpg (@data cluster 672)*
o File: papalars_9771422564.jpg (@data cluster 1321)*
o File: 220px-GPS_location_stamped_with_GPStamper.jpg.l (@data cluster 1586)%
o File: 220px-GPS_location_stamped_with_GPStamper.jpg (@data cluster 1589)#
o= File: Forensic Anthropology Lab4.jpg (@data cluster 1592)*
o File: IMG_20150103_094757_01&.jpg (@data cluster 1605)*
¢ File: serpinski2. PG (@data cluster 1896)*
o File: 485043486_cBle73e3e0 (2).jpg (@data cluster 2129)*

§| <256 || <16 || 1 |[1> || 162 || 256

¢]

ESect: 16792 (Phys Clust: 2099) Data Clust: 5

1 2 3 456 7 89 A BCDEF

<] Il [¥

| ooee
| oo10
| oazo
| ooz0
| ooao
| oase
| ooso
| o070
| ooso
| oooe
| oo2e
| ooEE
| ooce
| oooo
| oeER
| oore
| o100
| o110
| o120
| o120
| o140
| o150
| o160
| o170
| o180
| o190
| o120
| o1E0
|o1ca

J_mina

2E
7F
2E
F
41
50
4C
7F
41
a8
4c
7F
42
35
<18
5F
53
7F
43
J¢l¢]
02
39
<18
70
B3
7F
42
2E
01

1

20 20 20 20 20 20 20 20 20 20 10 00 64 75 5B
43 7F 45 00 00 75 SB FF 48 05 00 00 00 00 00
2E 20 20 20 20 20 20 20 20 20 10 00 64 75 5B
42 7F 48 00 00 75 5B FF 42 04 00 G0 00 00 00
4C 00 6F 00 74 00 4B 00 2E 00 OF GO 2D 44 00
0o 47 00 00 00 FF FF FF FF 00 0C FF FF FF FF
4F 54 48 20 20 20 20 4A 50 47 20 00 00 88 5B
43 61 4A 00 00 15 70 42 48 06 00 28 11 02 00
4C 00 6F 00 74 00 4B 00 2D 00 OF GO D3 6D 00
0O 70 00 73 00 2E 00 70 00 00 0OC 6E 00 67 00
4F 54 48 2D 4D 7E 31 50 4E 47 20 00 64 8B 5B
43 7F 48 00 00 80 43 43 48 28 00 FE 99 00 00
36 00 35 00 32 00 30 00 37 00 OF 00 Al 36 00
00 32 00 38 00 2E 0O 6A 00 0O 00 70 00 67 00
73 00 69 00 6D 00 6F 00 6E 00 OF GO Al SF 00
00 73 00 79 00 6F 00 6E 00 00 00 5F 00 38 00
49 4D 4F 4E S5F 7E 31 44 50 47 20 00 00 A9 SB
43 7F 48 00 00 CA 1A B7 44 32 00 D7 E2 18 00
33 00 32 00 2E 00 6A 00 70 0O OF G0 FA 67 00
00 FF FF FF FF FF FF FF FF 00 00 FF FF FF FF
69 00 6F 00 6E G0 73 00 5F 00 OF G0 FA 35 60
00 30 00 31 00 35 00 36 00 00 00 31 00 38 00

73 00 68 00 61 B0 69 00 72 00 OF 00 FA 65 00
0o 72 00 6F 0O 64 0O 75 00 0O 0C 63 00 74 00
43 41 49 52 45 7E 31 4A 50 47 20 00 00 A9 5B
43 7F 48 00 00 CA 1A B7 44 C1 01 67 53 08 00
36 00 34 00 37 00 30 00 34 00 OF G0 2C 34 00
0O 64 0O 70 00 &7 0O 00 00 00 00 FF FF FF FF
73 00 61 00 79 00 61 00 6E 0O OF 00 2C 74 00

An _EC An SE A an nn oo oo nn 24 on

JHal.. . pBH.. (...
AL.o vt Ko-...om,
a.p.s

LOTK
JHAH

_B.YL 0N
SIMON_.1JPG ...

HHG L

Lopenag.
-M.IPNG .d. [

p.r.o.d.u...c.
SHAIRE.1JPG ...

.H.H.....D..gS.
B6.4.7.0.4,..,4,

.5

1-p-9..

.a.y.a.

n....t.
A

[»

Directory @5: \cm203\files\images

The long file name has three segments. They are numbered 01, 02 and 43 going upwards from the
standard DOS directory entry. The 4 is used to signal the end of the sequence. Skipping over the

reserved bytes (see above) we see the filename “shaireproductions_5901561832.jpg”. Notice the size

Copyright © 2024 Washburn University. All Rights Reserved.

CM203 Digital Forensics I — Unit 10 - Washburn University — page 6 of 10
of the file is 545639 bytes (requires 1072 sectors or 134 data clusters).

Double-clicking on that file we go to a page that shows the data cluster runs and the actual file contents
as seen in the screenshot below:

v The Visible File System - /dev/sdd1 (as superuser) - + %
Open GoTe Print Tools Help
[Tree View | Search | 1[J==28_|[<16 [[1= |[16>][256~]
| < || = || volume Boot Record || Root Directory | | isect: 20344 (Phys Clust: 2543) Data Clust: 449
9 File: shaireproductions_59015618322.pg ; L2 3@y HELCDEE
¢ Path ;| cope FF D3 FF EG 00 10 4A 46 40 46 00 01 01 61 G0 B4 JFIF.. ...]
\cm203\filesiimagesishaireproductions_5901561832.jpg 0Qlo 00 B4 00 OQ FF E1 25 01 45 78 69 65 00 00 49 49 ,.,... %, Exif..II
¢ Run 1 (data cluster 449) 7| 0620 2A G0 03 0O 60 60 69 00 OF G1 62 00 06 60 60 00 *............... L
start data cluster: 449 (phys cluster: 2543) 5[G030 74 00 00 00 10 01 02 00 19 00 00 00 80 00 00 08 z............... L
Run length: 134 {ooa0 12 01 03 00 01 00 00 00 01 00 00 00 1A OL 05 00 ooowenn..
{ Bese o1 oo GO 6O 94 0G G0 60 1B G1 65 60 01 00 60 00
/| ooEe A2 G0 0O 0O 28 G1 63 60 G1 GO G0 00 02 68 60 60(..

{0070 32 01 02 00 14 00 00 00 AA 00 G0 00 13 02 03 008 2....
i GESG 01 G0 G0 GO 01 OO0 00 00 69 87 04 00 01 OGO G0 GO
;| 0090 BE 00 00 00 46 0D 00 00 43 61 6E 6F 6E 00 43 61F...Canon.Ca
;| DDAD 6E 6F B6E 20 50 6F 77 65 72 53 68 6F 74 20 53 44 non PowerShot SD
/| G0BO 38 35 30 20 49 53 00 00 B4 00 00 00 61 00 00 00
5| OOCO B4 0O 00 00 01 00 00 00 32 30 31 34 3A 30 35 3A
{eDe 31 31 20 31 32 3A 35 35 3A 30 33 00 20 00 9A 82
i DBED 05 00 B1 00 00 60 44 02 G0 00 9D 82 05 00 61 08
| GOFO 00 00 4C 02 00 00 27 88 03 00 01 00 00 60 FA 00
7| 0100 00 00 B0 90 07 00 04 00 G0 00 30 32 32 30 03 %0
| 0110 02 60 14 00 00 00 54 62 60 00 04 90 062 60 14 00
i G120 00 00 68 02 00 60 01 91 ©7 00 04 G0 00 00 61 02
{0130 03 00 02 91 05 00 01 00 00 00 7C 02 00 00 01 92
i 0140 0A 0O 01 00 00 00 84 02 00 00 02 92 05 00 01 0O
[0150 00 00 8C 02 G0 00 G4 92 OA 00 01 00 G0 00 94 02
i 0150 00 00 05 92 05 00 01 00 00 00 9C 02 00 00 07 92
70170 03 00 01 00 G0 00 G5 00 00 00 09 92 63 00 61 00
1| 0180 00 00 18 00 00 00 OA 92 05 00 01 00 00 00 A4 02
{6150 00 60 7C 92 07 00 44 G5 00 00 AC 02 00 00 86 92
i OlAD 07 00 08 01 00 G0 FO OB G0 00 00 AD 07 00 04 00
J G1E0 00 060 30 31 30 30 061 AD 03 00 01 G0 060 60 01 00
7| B1CO 00 00 B2 AQ 03 00 01 00 G0 00 20 GA 00 00 03 AQ
1| 01De 03 00 01 00 00 00 98 07 00 00 05 A0 04 00 01 00

File: \em203ifilesiimages\shaireproductions_5901561832.jpg (Dir@5)

The file starts on data cluster 449 and has a run length of 134 data clusters. There is only one run, so
the file is stored contiguously. The last data cluster is 449 + 134 -1 = 582 (try to find it in the FAT!).

Unit 10.5 — The File Allocation Table (FAT)

We use the FAT to find the allocated directory or file blocks. On modern drives there are two FATS.
Their locations are given in the VBR. The second is a backup copy of the first. I suspect that the two
FATs are used to provide robustness in case the power goes out during a disk write. The first FAT is
updated first and then the second. If the power goes out while updating the first FAT then the second
FAT is copied over the first one. Any of the interrupted data is lost. If the power goes out during the
update of the second FAT, then the first FAT is copied over the second one. In this case the interrupted
data is not lost.

FAT entries are 4 bytes long (32 bits, thus the 32 in FAT32). Each FAT entry represents a data cluster

on the partition. Thus there must be as many FAT entries as there are data clusters on the partition.
Thus the size of the FAT in bytes is 4*number of data clusters. Divide by 512 and round up to get the

Copyright © 2024 Washburn University. All Rights Reserved.

CM203 Digital Forensics I — Unit 10 - Washburn University — page 7 of 10
size of the FAT in sectors.

Each FAT entry points to the next FAT entry for the directory or file. We call this the FAT chain. When
you reach the end of the directory or file you will find OxOFFFFFFF or 0xOFFFFFF8 (converted to
little-endian). These values mark the end of the chain and the last cluster of the file or directory.

Entries 0 and 1 are not used. The root directory is always at entry 2.
Unallocated data clusters are marked with all zeros.

Let's consider a simple example first. For simplicity I used FF to indicate the end of the chain.
Suppose a file is stored in data clusters 3, 4, 5, A, B, C, 11, 12, and 1A in that order. The directory
entry would point to data cluster 3. The entry at location 3 tells you to go to location 4 for the next
cluster. The entry at 4 tells you to go to 5. The entry at 5 tells you to go to A. The entry at A points to
B, B points to C and C points to 11. 11 points to 12, and 12 points to 1A. The entry at 1A indicates the
end of the chain, which is the last block in the file.

Here's a sketch of what this FAT would look like

] 1 2 3
FF FF FF

n 5 6 7
5 A 0

2] 9 A B
0 0 B

C] E F
11 0 0

10 11 12 13
0 12 1A

14 15 16 17
0 0 0

18 19 1A 1B
0 0 FF

Below is the first sector of the actual FAT from the same file system as the directory in the previous
section. There are a total of 8368 sectors in the FAT (see the VBR). This means there are a maximum
of 8368*128 = 1071104 data clusters (the FAT doesn't have to fill the last sector). When the partition is
first created the OS will mark the number of free clusters in the FSINFO block and that number gets
decremented for each cluster that is used (and incremented for each one that is freed up).

Copyright © 2024 Washburn University. All Rights Reserved.

CM203 Digital Forensics I — Unit 10 - Washburn University — page 8 of 10

v The Visible File System - /dev/sdd1 (as superuser) - + %
Open GoTo Print Tools Help
[Tree vView | Search | | 256 || <16 || 1 || 1= || 16— || 256 |
| < || = || Volume Boot Record || Root Directory JSect: 32 (Phys Clust: 4)
¢ Volume Boot Record ; 61 2 3 456 7 889 ABCDEF
Jump instruction ilopoe FEFFFFOFFFFFFFOFFEFFFFOFFFFFFFOF ..ot
OEM name: mkfs.fat 0010 FF FF FF OF FF FF FF OF O7 00 00 00 08 00 00 G0 ,
Bytes per sector: 512 (Ox200) i oe20 09 00 00 00 OA OO OO 00 OB 00 00 00 OC 00 00 00coovnn
Sectors per cluster: 8 (Ox8) 7| oE30 0D 00 0O G0 OE 00 G0 00 OF 00 00 00 10 00 60 00
Number of reserved sectors: 32 (0x20) Joe4n 11 GO OGO GO 12000000 13000000 14000000
Number of FATs: 2 (0x2) 0050 15 00 00 00 16 00 00 00 17 00 00 00 18 00 00 G0 00
Unused ;0060 19 00 60 G0 1A 00 G0 00 1B 00 00 60 1C 00 00 B0ovvvvvrvnin,
Sectors in partition (if two bytes): 0 (0x0) 0070 1D 00 00 00 1E 00 00 00 1F 00 00 00 20 00 00 G0
Media type (F8=fixed, FO=removable) 0080 21 00 00 00 22 00 00 00 23 00 00 00 24 00 GO GO !..."...#...%...
Unused 1| 0E90 25 00 00 00 26 00 00 00 27 00 00 00 FF FF FF OF %... !
Sectors in track: 32 (0x20) ODAD 209 00 0O 00 2A 00 00 00 2B 00 00 00 2C 00 00 G0)
Number of heads: 64 (0x40) 7| oeBG 20 00 00 G0 2E OO OO 00 2F G0 0O 0O 30 00 60 00 -
Sectors before start of partition: 2048 (0x800) il oeco 31 00 00 00 FF FF FF OF 33 00 00 00 34 00 00 00 1
Sectors in partition (if four bytes): 8585216 (0x830000) 0ODO 35 00 00 00 36 00 00 00 37 00 00 00 38 00 00 GO 5.
Sectors in FAT: 8368 (0x20B0) JGOEO 30 00 00 00 3A 00 G0 00 3B 00 00 00 3C 00 00 G0 9
FAT write behavior: FATs are mirrored 0OFC 3D 00 00 00 3E 00 00 00 3F 00 00 00 40 00 00 0O =..
Version numbers 70100 41 00 00 G0 42 00 G0 00 43 00 00 60 44 00 00 GO A,
Root directory starts at data cluster 2 (Ox2)# ;| 0110 45 00 00 G0 45 00 G0 00 47 00 00 00 48 00 G0 00 E..
FSINFO at sector: 1 (Ox1)* 0120 49 00 00 00 4A 00 OO 0O 4B 0O 00 0O 4C 00 00 GO I..
Backup VBR at sector: 6 (0x6) i 6130 4D 00 0D 00 4E OO 0D 00 4F 00 00 00 50 00 00 G0 M.,
Unused 0140 51 OO OO 00 52 00 00 00 53 00 00 00 54 00 00 G0 Q..
BIOS INT12h drive number: 128 (0x80) 5| 6150 55 00 00 60 56 00 00 00 57 60 00 00 58 00 60 00 U..
Unused i ol60 59 00 00 00 S5A 00 OO0 00 5B 00 00 00 5C 00 00 00 Y..
Extended boot signature (29=serial number and volume label follow) |[:| G170 5D G0 60 G0 SE 00 G0 00 SF 00 G0 60 60 G0 00 60 ..
Volume serial number: (OxDESES4A1) [0180 A1 00 0O 00 62 00 G0 00 63 00 00 00 64 00 00 G0 a..
Volume label: 0190 &5 00 00 00 665 00 00 00 67 00 00 00 68 00 00 00 e..
File system type: FAT32 ;| G1AD 69 00 00 G0 6A 00 G0 00 6B 00 00 60 6C 00 00 B0 i..
Bootloader code 0lBO 6D 00 00 00 6E 00 00 00 6F 00 00 00 70 00 G0 GO m..
Signature: OxAASS 0lCO 71 OO OO 00 72 00 00 00 73 00 00 00 74 00 00 GO q..
¢ Derived quantities: i 010 75 00 00 0O 76 00 GO 00 77 00 0O OQ 78 G0 00 0O u..
FAT#1 starts at sector 32 (0x20, following reserved)* i olEG 79 00 00 00 7A OO OO0 00 7B 00 00 00 7C 00 00 00 y..
FAT#2 starts at sector 8400 (0x2000, following FAT#1)* ;| @1FO 7D 00 G0 G0 7E 00 G0 G0 7F 00 00 00 80 00 00 00 1}
Data clusters start at sector 16768 (0x4180 following FAT#2)* :
FAT1

You can see that data clusters 2, 3, 4 and 5 have one data cluster each (they are small directories). Data
cluster 6 continues for a total of 34 contiguous data clusters (see the sequence 7, 8, 9, A, B, etc. from
0x6=6 to 0x27=39).

Here's a formula to help you figure out which sector contains the next FAT entry.

n = clust/128 (throw away fraction) (since there are 128 entries per sector)
sect=n+ 32 (since first sector is #32)
offset = (clust —n*128) * 4 (to determine where entry is relative to start of sector)

For example, let's say we want to find data cluster 51804 in the FAT. Divide the data cluster number by
128 to get n=404. Add 32 to get the sector because the FAT starts at sector 32. You get sector 436. Go
there. The offset from the start of that sector is determined as follows. Subtract 404*128=51712 from
51804 and you'll get 92. Multiply by 4 to get 368. Convert to hex to get 0x170. That's the offset to the
FAT entry.

Unfortunately when a file is deleted the OS will go though the FAT and set all the entries to zeros. This

is necessary to mark them as unallocated data clusters, but it erases the FAT entry chain that tells us
where the file blocks are. However, the deleted directory entry will still point to the first data cluster,

Copyright © 2024 Washburn University. All Rights Reserved.

CM203 Digital Forensics I — Unit 10 - Washburn University — page 9 of 10
and, with any luck, the file clusters may be contiguous.

The VisibleFS program allows you to go to any particular entry in the FAT. Just click on “GoTo” in the
menu and choose “Go to FAT Entry...” and type in the data cluster that you want to see. The
screenshot below shows the entry for data cluster 611 (highlighted on the right) which is the start of a
JPG image file (see the directory entry on the left). Note the FFFFFFOF just before it showing the end
of the FAT chain for the previous file.

~
The Visible File System - fat32-1.dd1 — O
Open GoTo Print Extract lmage Help
[Tree View | Search View | | 256 || 16 || 1 || - || 165 || 2565 |
| < || = || Volume Boot Record || Root Directory | Sect: 36 (Phys Clust: 4)
¢ File: 293484615 _71ea950109 z,] ---- 81 2 34567 889 ABCDEF
L _zjpg :
¢ Path ‘[0ooo 61 02 00 0O 062 02 0O 6@ 03 62 60 00 04 02 0O 00
\cm203¥files11293484615_712a950109_z.jpg ‘| oe10 05 02 00 0D D6 G2 00 00 67 02 00 00 08 02 00 00
* 2
R e e L (ohys cluster: 1124] /| 6020 09 02 00 0B 0A 02 00 0B OB G2 00 80 OC 82 00 80
A e e phys cluster: ;| 0030 ©D 02 00 0O OE 02 00 00 OF 02 00 00 10 02 60 00
L“”t g”tg \oeter s | oea0 11 62 66 00 12 02 00 G0 13 02 60 00 14 02 00 B0
ast data cluster in rur: 10050 15 62 00 00 16 02 00 00 17 02 00 00 18 02 00 00 oovvvvvvn..,

;| 6eB0 19 02 00 00 1A G2 00 00 1B 02 00 00 1C 02 00 00
;| 0070 1D 02 00 00 1E 02 00 00 1F 02 00 00 20 02 00 00
i1 0080 21 02 00 0O 22 02 00 0D 23 02 00 00 24 02 0O 00
7| 0090 25 02 00 00 26 62 00 00 27 62 00 00 28 02 00 00
7| OOAD 29 02 00 0O 2A 02 00 0D 2B 02 00 00 2C 02 00 00
;| G6BG 20 02 00 00 2E 62 00 00 2F 62 00 00 30 062 00 00
i1 60CO 31 02 00 0O 32 02 00 00 33 02 00 00 34 02 00 00
il ooDo 35 02 00 00 36 02 00 00 37 02 00 00 38 02 00 00
5| OOED 39 02 00 00 3A 02 00 00 3B 02 00 00 3C 02 00 00
;| GOFO 3D 02 00 00 3E 02 00 00 3F 02 00 00 40 02 00 00
;lolee 41 02 00 00 42 02 00 00 43 02 00 00 44 02 00 00
il 0110 45 02 00 00 46 02 00 00 47 02 00 00 48 02 00 00
5| 0120 49 02 00 0O 4A 02 00 0D 4B 02 00 00 4C 02 0O 00
il 0130 4D 02 00 00 4E 02 00 00 4F 02 00 00 50 02 00 00
i1 0140 51 02 00 0O 52 02 00 00 53 02 00 00 54 02 00 00
;| 6150 55 02 00 00 56 02 00 00 57 G2 00 00 58 02 00 00
1| 0160 59 02 00 00 5A 02 00 00 SB 02 00 00 5C 02 00 00
;| 6170 5D 02 00 00 SE 02 00 00 5F 62 00 00 60 02 00 00
i1 0180 61 02 00 0O 62 02 00 00 FF FF FF OF 64 62 00 00
il 6190 65 02 00 00 66 62 00 00 67 62 00 00 68 02 00 00
il G1AD 69 02 00 0O GA 02 00 0D 6B 02 00 00 6C 02 0O 00
;| 01B0 6D 02 00 00 6E 02 00 00 6F 02 00 00 70 02 00 00
il 01CO 71 02 00 00 72 02 00 00 73 02 00 00 FF FF FF OF
il e1De 75 02 00 00 76 02 00 00 77 02 00 00 78 02 00 00
3| G1EG 79 02 00 00 7A 02 00 00 7B 02 00 00 7C 02 00 00
;| G1F0 7D 02 00 00 7E 02 00 00 7F 02 00 00 80 02 00 00 }...~...........

—

Po<CoTHmMEN ©L
‘rxHDCIDeAORO:

=+ m

c o

=
P = 3 0w kT PR = D= L Tm

FAT1

Unit 10.6 — The Big Picture

And that's it. You have seen everything there is to see in FAT32. But it probably helps to put the pieces
together with some examples.

The OS starts by reading the VBR and finding out where the root directory is. It reads through the root
directory looking for the subdirectory or file the user is looking for.

If it is looking for a subdirectory, it starts at its first data cluster and looks through it for the next

subdirectory or file. If it doesn't find it in the first data cluster, it follows the FAT to the next one.
Eventually it will find what it's looking for or reach the end of the FAT chain and issue an error.

Copyright © 2024 Washburn University. All Rights Reserved.

CM203 Digital Forensics I — Unit 10 - Washburn University — page 10 of 10

When it finally gets to a file, it will follow the FAT chain to find out which data clusters to load to get
that file in RAM. And that's it.

In the simple file system shown here all files were stored contiguously. This is because they were
added to an empty drive, in order and never modified. Changes made over time often result in
fragmented files because they exceed the space originally allocated to them. If a file never changes
after it is first saved, on a drive with lots of empty space, it will probably be contiguous. Given that
modern drives are so big, there's a good chance that files will be contiguous.

Copyright © 2024 Washburn University. All Rights Reserved.

